伍启期.P(n,k)的计数及其良域[J].数学研究及应用,2001,21(2):281~286 |
P(n,k)的计数及其良域 |
On the Calculation of P(n,k) and its Good Field |
投稿时间:1998-03-30 |
DOI:10.3770/j.issn:1000-341X.2001.02.022 |
中文关键词: 全分拆 无序分拆 良城 计数. |
英文关键词:total partitions unordered partitions good field calculation. |
基金项目: |
|
摘要点击次数: 2422 |
全文下载次数: 1045 |
中文摘要: |
设P(n,k)为整数n分为k部的无序分拆的个数,每个分部≥1;P(n)为n的全分拆的个数.P(n,k)是用途广泛的、且又十分难予计算的数.本文证明了下述定理:当n<k,P(n,k)=0;当k≤n≤2k,P(n,k)=P(n-k);当k=1,4≤n≤5,或者当k≥2,2k+1≤n≤3k+2,P(n,k)=P(n-k)-(?)P(t)还定义了P(n,k)的良城,因面可借助若干个P(n)的值,迅速地计算大量的P(n,k)的值. |
英文摘要: |
Let P(n,k) be the number of unordered partitions of an integer n into k parts, where each part ≥1, and P(n) the number of all unordered partitions of n (so,in brief, it is called the number of total partitions). The number P(n,k) has a broad applications. However, it is rather difficult to find the values of P(n,k).In this paper we give the following theorem: P(n,k) =0, when n < k; P(n,k) = P(n - k) ,when k ≤ n ≤ 2k ;and P(n,k) = P(n - k)-(?)P(t),when k=1,4≤n≤ 5, or when k ≥ 2,2k + 1 ≤ n ≤ 3k + 2. And we define also the good field of P(n,k). This theorem will help us find numberless the values of P(n,k) quickly with the aid of the values of P(n) . |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|