张希荣,戴峰.球面上等收敛算子的有界性(英文)[J].数学研究及应用,2002,22(3):332~336 |
球面上等收敛算子的有界性(英文) |
Boundedness of the Equiconvergent Operators on the Sphere |
投稿时间:1999-06-07 |
DOI:10.3770/j.issn:1000-341X.2002.03.003 |
中文关键词: |
英文关键词:equiconvergent operators fourier-laplace series. |
基金项目: |
|
摘要点击次数: 2632 |
全文下载次数: 1215 |
中文摘要: |
设Rn 是n-维欧氏空间n≥3.用Ωn表示Rn 上的单位球面,对于函数f∈L(Ωn),ENδ(f)表示其Fourier-Laplace级数的δ阶Cesaro平均所决定的等收敛算子,其中,λ:=(n-2)/2,δ是熟知的临界指标.对于0<δ≤λ,令p0:=(2λ)/(λ+δ),本文主要证明了如下结果: |
英文摘要: |
Let Rn be an n-dimensional Euclidean space with n≥ 3. Denote by Ωn the unit sphere in Rn. For a function f∈L(Ωn) we denote by ENδ(f) the equiconvergent operator of Cesaro means of order δ of the Fourier-Laplace series of f. The special value λ:= (n-2)/2 of δ is known as the critical index. For 0 < δ≤λ, we set p0:= (2λ)/(λ+δ). The main aim of this paper is to prove that (?) with l > 1. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|