刘林忠,张忠辅,王建方.最大度不小于6的伪-Halin图的完备色数[J].数学研究及应用,2002,22(4):663~668 |
最大度不小于6的伪-Halin图的完备色数 |
On the Complete Chromatic Number of Pseudo-Halin Graphs with △(G)≥6 |
投稿时间:2000-01-24 |
DOI:10.3770/j.issn:1000-341X.2002.04.027 |
中文关键词: 伪-Halin图 Halin-图 完备色数 |
英文关键词:Pseudo-Halin graph complete coloring complete chromatic number. |
基金项目:国家自然科学基金资助项目(19871036) |
|
摘要点击次数: 2467 |
全文下载次数: 1373 |
中文摘要: |
设G为2-连通平面图,若存在G的面f0,其中f0的边界构成的圈上无弦且V(f0)中的点的度至少为3,使得在G中去掉f0边界上的所有边后得到的图为除V(f0)中的点外度不小于3的树T,则称G为伪-Halin图;若V(f0)中的点全为3度点,则称G为Halin-图.本文研究了这类图的完备色数,并证明了对△(G)≥ 6的伪-Halin图 G有 XC(C)=△(G)+1.其中△(G)和XC(G)分别表示G的最大度和完备色数. |
英文摘要: |
Let G(V,E) be a 2-connected plane graph, f0 a face without chord on its boundary (a cycle) and d(v)≥ 3 for every v ∈ V(f0) . If the graph T obtained from G(V,E) by deleting all edges on the boundary of f0 is a tree of which all vertices v ∈ V\V(f0) satisfy d(.v)≥ 3 , then G(V,E) is called a Pseudo-Halin graph; G(V,E) is said to be Halin-graph iif d(v) = 3 for every v ∈ V(f0) . In this paper,we proved that for any Pseudo-Halin graph with △(G) ≥ 6 , have XC(G) = △(G) + 1 . Where △(G) , XC(G) denote the maximum degree and the complete chromatic number of G, respectively. V(f0) denotes the vertices on the boundary of f0. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|