杨利民,姚红.正则m叉树T的S(n)={Ki:1≤i≤n}-因子数的递归公式[J].数学研究及应用,2003,23(2):362~366 |
正则m叉树T的S(n)={Ki:1≤i≤n}-因子数的递归公式 |
A Recurrence Formula for the S(n)-Factoring Number of a Regular m -furcating tree |
投稿时间:2000-01-12 |
DOI:10.3770/j.issn:1000-341X.2003.02.031 |
中文关键词: 正则m叉树 分支 因子 完全图 分枝点 叶数 |
英文关键词:regular m-furcating tree component factor complete graph brach's vertice the number of leaves |
基金项目: |
|
摘要点击次数: 2369 |
全文下载次数: 935 |
中文摘要: |
在正则m叉树T中,删除K2及端点关联边,通过所得子正则m叉树中分枝点、叶数和m之间内在联系,本文导出正则m叉树T的S(n)={Ki:1≤i≤n}-因子数递归公式.特别当m=2时,正则2叉树递归公式为:At=At/22+2At/42 At/2,t为正则2叉树T的叶数. |
英文摘要: |
For a regular m-furcating tree, the authors derive a recurrence formula of the number of its S(n)={Ki:1≤i≤n}-factor through analysing the relation among i,t and m of sub-furcating trees. Specially, m=2, the recurrence formula of a regular binary tree is as follows: At=At/22+2At/42 At/2, with initial conditions: A2=3, A4=15. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|