张景肖,张波.流形上随机流的渐近平坦性(英文)[J].数学研究及应用,2004,24(2):191~197 |
流形上随机流的渐近平坦性(英文) |
Asymptotic Flatness of Stochastic Flow on Manifolds |
投稿时间:2002-06-03 |
DOI:10.3770/j.issn:1000-341X.2004.02.001 |
中文关键词: 扩散过程 随机流 Hausdorff测度 流形 |
英文关键词:diffusion process stochastic flow Hausdorff measure manifold |
基金项目: |
|
摘要点击次数: 2314 |
全文下载次数: 1461 |
中文摘要: |
本文的目的是讨论流形上由随机微分方程确定的扩散过程的体积零化性质。令Xt(x)是描述流形M上的微分同胚流x→Xt(x)的扩散过程,K是M中具有正有限Hausdorff测度的紧致曲面,我们给出Xt(K)的面积在t→∞时几乎必然趋于零的条件,特别地,随机流Xt(·)的渐近零化定向可求长弧r:[0,1]→M的弧长。 |
英文摘要: |
The aim of this article is to discuss a volume nullification property of the diffusion process determined by a stochastic differential equation on a manifold. Let Xt(x) be a diffusion process describing a flow of diffeomorphisms x→Xt (x) in a manifold M, and K be a compact surface in M with positive finite Hausdorff measure. We present conditions under which the area of Xt(K) goes to zero almost surely and in moments as t→∞, in particular, the flow Xt(·) asymptotic nullifies the arc-lenth of oriented rectifiable arcs r:[0,1]→M. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|