尹居良,司徒荣.具有跳跃的非Lipschitz系数正-倒向随机微分方程解的存在性(英文)[J].数学研究及应用,2004,24(4):577~588 |
具有跳跃的非Lipschitz系数正-倒向随机微分方程解的存在性(英文) |
Existence of Solutions for Forward-Backward Stochastic Differential Equations with Jumps and Non-Lipschitzian Coefficients |
投稿时间:2002-10-08 |
DOI:10.3770/j.issn:1000-341X.2004.04.002 |
中文关键词: 正-倒向随机微分方程 无界停时 非Lipschitz系数 先验估计 |
英文关键词:Forward-backward stochastic differential equations Unbounded stopping time Non-Lipschitzian coefficients Priori estimate. |
基金项目: |
|
摘要点击次数: 2983 |
全文下载次数: 1307 |
中文摘要: |
研究了终端为停时带Poisson跳的正-倒向随机微分方程,在非Lipschitz系数和弱单调性的假设条件下,应用概率分析方法,证明了方程解的存在唯一性,同时给出了有关的先验估计,其中的正向方程允许为退化情形。 |
英文摘要: |
This paper studies for ward-back ward differential equations with Poisson jumps and with stopping time as termination. Under some weak monotonicity conditions and for non-Lipschitzian coefficients, the existence and uniqueness of solutions are proved via a purely probabilistic approach, while a priori estimate is given. Here, we allow the forward equation to be degenerate. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|