南东,隆金玲.$L^p(K)$中RBF神经网络的系统识别问题[J].数学研究及应用,2009,29(1):124~128 |
$L^p(K)$中RBF神经网络的系统识别问题 |
$L^p(K)$ Approximation Problems in System Identification with RBF Neural Networks |
投稿时间:2007-01-03 修订日期:2007-05-26 |
DOI:10.3770/j.issn:1000-341X.2009.01.016 |
中文关键词: RBF神经网络 系统识别 $L^p$逼近 连续泛函和算子. |
英文关键词:RBF neural networks system identification $L^p$-approximation continuous functionals and operators. |
基金项目:国家自然科学基金(No.10471017). |
|
摘要点击次数: 12411 |
全文下载次数: 2699 |
中文摘要: |
本文主要研究RBF神经网络在系统识别上的$L^p$逼近问题.文中证明了用$L^p_{loc}$中一元非多项式函数的复合,可以逼近定义在$L^p(K)$上的连续泛函,以及$L^{p_1}(K_1)$到$L^{p_2}(K_2)$的连续算子. 这个结果表明,若RBF神经网络的激活函数选为$L^p_{loc}$中的任意非偶次多项式函数,则该神经网络就能以任意精度识别上述系统. |
英文摘要: |
$L^p$ approximation problems in system identification with RBF neural networks are investigated. It is proved that by superpositions of some functions of one variable in $L^p_{\rm loc}({\mathbb R})$, one can approximate continuous functionals defined on a compact subset of $L^p(K)$ and continuous operators from a compact subset of $L^{p_1}(K_1)$ to a compact subset of $L^{p_2}(K_2)$. These results show that if its activation function is in $L^p_{\rm loc}({\mathbb R})$ and is not an even polynomial, then this RBF neural networks can approximate the above systems with any accuracy. |
查看全文 查看/发表评论 下载PDF阅读器 |