相春环,程新跃.关于一类弱-Berwald的$(\alpha,\beta)$-度量[J].数学研究及应用,2009,29(2):227~236 |
关于一类弱-Berwald的$(\alpha,\beta)$-度量 |
On a Class of Weakly-Berwald $(\alpha ,\beta)$-Metrics |
投稿时间:2006-11-18 修订日期:2007-07-13 |
DOI:10.3770/j.issn:1000-341X.2009.02.005 |
中文关键词: 平均Berwald曲率 弱Berwald度量 $S$-曲率 $(\alpha,\beta)$-度量. |
英文关键词:mean Berwald curvature weakly-Berwald metric $S$-curvature $(\alpha ,\beta)$-metric. |
基金项目:国家自然科学基金(No.10671214);重庆市科委教育基金(No.KJ080620); 重庆文理学院自然科学基金(No.Z2008SJ14). |
|
摘要点击次数: 4786 |
全文下载次数: 2355 |
中文摘要: |
本文研究了一类重要的定义在一个$n$-维流形上的$(\alpha,\beta)$-度量$F=(\alpha \beta)^{m 1}/\alpha^{m}$,其中$\alpha(y)=\sqrt{a_{ij}(x)y^iy^j}$为黎曼度量, $\beta(y)=b_i(x)y^i$为非零1-形式且$m$为不等于$-1$, $0$, $-1/n$的实数.得到了这类度量为弱-Belwald度量的充要条件.进一步,证明这类$(\alpha,\beta)$-度量具有迷向Belwald曲率当且仅当它具有迷向$S$-曲率.并且此时, $S$-曲率为0且该度量为弱-Belwald度量. |
英文摘要: |
In this paper, we study an important class of $(\alpha, \beta)$-metrics in the form $F=(\alpha \beta)^{m 1}/{\alpha^{m}}$ on an $n$-dimensional manifold and get the conditions for such metrics to be weakly-Berwald metrics, where $\alpha =\sqrt{a_{ij}(x)y^{i}y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x)y^{i}$ is a $1$-form and $m$ is a real number with $m\not= -1, 0, -1/n$. Furthermore, we also prove that this kind of $(\alpha,\beta)$-metrics is of isotropic mean Berwald curvature if and only if it is of isotropic $S$-curvature. In this case, $S$-curvature vanishes and the metric is weakly-Berwald metric. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|