康庆德,刘淑霞,袁兰党.完全图分拆为带两条弦的6-长圈[J].数学研究及应用,2009,29(5):774~786 |
完全图分拆为带两条弦的6-长圈 |
Decomposition of $\lambda K_v$ into $6$-Circuits with Two Chords |
投稿时间:2007-07-27 修订日期:2007-09-07 |
DOI:10.3770/j.issn:1000-341X.2009.05.002 |
中文关键词: 图设计 带洞图设计 恰二可迁群. |
英文关键词:graph design holey graph design sharply 2-transitive group. |
基金项目:国家自然科学基金(No.10671055);河北省自然科学基金(No.A2007000230);河北师范大学基金(No.L2007B22). |
|
摘要点击次数: 2997 |
全文下载次数: 1851 |
中文摘要: |
本文主要讨论将完全图分拆为带两条弦的6-长圈问题. 我们利用PBD闭集等组合设计的方法给出了图设计存在的递归构造,又利用恰二可迁群有效地构造了所需的带洞图设计,并且给出了指数和图的边数相等时图设计的统一构造方法.从而给出了图设计的存在谱. |
英文摘要: |
In this paper, we discuss the $G$-decomposition of $\lambda K_v$ into $6$-circuits with two chords. We construct some holey $G$-designs using sharply 2-transitive group, and present the recursive structure by PBD. We also give a unified method to construct $G$-designs when the index equals the edge number of the discussed graph. Finally, the existence of $G$-$GD_\lambda(v)$ is given. |
查看全文 查看/发表评论 下载PDF阅读器 |