韩伟伟.拟线性双曲组在半有界初始轴上的柯西问题整体经典解的渐近性态[J].数学研究及应用,2010,30(1):41~53 |
拟线性双曲组在半有界初始轴上的柯西问题整体经典解的渐近性态 |
Asymptotic Behavior of Global Classical Solutions to the Cauchy Problem on a Semi-Bounded Initial Axis for Quasilinear Hyperbolic Systems |
投稿时间:2008-04-04 修订日期:2008-04-16 |
DOI:10.3770/j.issn:1000-341X.2010.01.004 |
中文关键词: 拟线性双曲组 半有界初始轴上的柯西问题 弱线性退化 匹配条件 整体经典解 行波. |
英文关键词:quasilinear hyperbolic system Cauchy problem on a semi-bounded initial axis global classical solution weak linear degeneracy matching condition travelling wave. |
基金项目:国家自然科学基金(Grant No.10771038). |
|
摘要点击次数: 3224 |
全文下载次数: 1893 |
中文摘要: |
在本文中,我们考察拟线性双曲组在半有界初始轴上的柯西问题整体经典解的渐近性态.在整体经典解存在性结果的基础上, 我们证明了当时间$t\rightarrow \infty$时, 只要初始数据当\ $x\rightarrow \infty$(相应地,$x\rightarrow -\infty$)时以速率$(1 x)^{-(1 \mu)}$(相应地,$(1-x)^{-(1 \mu)}$)衰减, 柯西问题的经典解就以速率$(1 t)^{-\mu}$逼近于$C^1$行波解的组合, 其中$\mu$是一个正常数. |
英文摘要: |
In this paper we study the asymptotic behavior of global classical solutions to the Cauchy problem with initial data given on a semi-bounded axis for quasilinear hyperbolic systems. Based on the existence result on the global classical solution, we prove that, when $t$ tends to the infinity, the solution approaches a combination of $C^1$ travelling wave solutions with the algebraic rate $(1 t)^{-\mu}$, provided that the initial data decay with the rate $(1 x)^{-(1 \mu)}$ (resp. $(1-x)^{-(1 \mu)}$) as $x$ tends to $ \infty$ (resp. $-\infty$), where $\mu$ is a positive constant. |
查看全文 查看/发表评论 下载PDF阅读器 |