韦增欣,黄海东,陶艳蓉.一个修正HS共轭梯度法及其收敛性[J].数学研究及应用,2010,30(2):297~308 |
一个修正HS共轭梯度法及其收敛性 |
A Modified Hestenes-Stiefel Conjugate Gradient Method and Its Convergence |
投稿时间:2007-12-22 修订日期:2008-05-21 |
DOI:10.3770/j.issn:1000-341X.2010.02.013 |
中文关键词: 共轭梯度法 充分下降条件 线性搜索 全局收敛. |
英文关键词:conjugate gradient method sufficient descent condition line search global convergence. |
基金项目:国家自然科学基金 (Grant No.,10761001). |
|
摘要点击次数: 3206 |
全文下载次数: 4030 |
中文摘要: |
众所周知,对于目标函数来说,由HS共轭梯度法产生的方向 不一定是下降方向.在这篇文章中,我们对HS共轭梯度法进行修正,由此产生的搜索方向总是满足充分下降条件.这个方法的一个优点是: $\beta_{k}^{HS*}$在弱Wolfe-Powell条件下保持非负.在适当的条件下,我们证明了该方法的全局收敛性.初步的数值结果表明:修正HS 方法比PRP和HS方法好一点. |
英文摘要: |
It is well-known that the direction generated by Hestenes-Stiefel (HS) conjugate gradient method may not be a descent direction for the objective function. In this paper, we take a little modification to the HS method, then the generated direction always satisfies the sufficient descent condition. An advantage of the modified Hestenes-Stiefel (MHS) method is that the scalar $\beta_{k}^{HS*}$ keeps nonnegative under the weak Wolfe-Powell line search. The global convergence result of the MHS method is established under some mild conditions. Preliminary numerical results show that the MHS method is a little more efficient than PRP and HS methods. |
查看全文 查看/发表评论 下载PDF阅读器 |