韩广国.区传递的$2-(v, k, 1)$ 设计与单群$E_6(q)$[J].数学研究及应用,2010,30(4):581~588 |
区传递的$2-(v, k, 1)$ 设计与单群$E_6(q)$ |
Block-Transitive $2$-$(v,k,1)$ Designs and Groups $E_6(q)$ |
投稿时间:2008-11-11 修订日期:2009-05-15 |
DOI:10.3770/j.issn:1000-341X.2010.04.002 |
中文关键词: 设计 区传递 点本原 自同构群. |
英文关键词:block design block-transitive point-primitive automorphism group. |
基金项目:国家自然科学基金(Grant No.10871205),中国博士后基金(Grant No.20080441323),浙江省教育厅项目(Grant No.Y200804780). |
|
摘要点击次数: 2839 |
全文下载次数: 2115 |
中文摘要: |
讨论区传递的$2-(v, k, 1)$设计的分类问题.特别地, 讨论自同构群的基柱为李型单群$E_6(q)$的区传递$2-(v, k, 1)$设计,得到如下结论: 设${\cal D}$为 一个$2-(v, k, 1)$设计, $G\leq$Aut$(\cal D)$是区传递, 点本原但非旗传递的. 若 $q>$ $(3(k_rk-k_r 1)f)^{1/3}$(这里$k_r=(k,v-1)$, $q=p^f$, $p$是素数, $f$是正整数), 则 ${\rm Soc}(G)\not\congE_6(q)$. |
英文摘要: |
This article is a contribution to the study of block-transitive automorphism groups of $2$-$(v, k, 1)$ block designs. Let ${\cal D}$ be a $2$-$(v, k, 1)$ design admitting a block-transitive, point-primitive but not flag-transitive automorphism group $G$. Let $k_r=(k,v-1)$ and $q=p^f$ for prime $p$. In this paper we prove that if $G$ and ${\cal D}$ are as above and $q>$ $(3(k_rk-k_r 1)f)^{1/3}$, then $G$ does not admit a simple group $E_6(q)$ as its socle. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|