刘稳,林静.k-途径正则有向图[J].数学研究及应用,2011,31(4):637~642 |
k-途径正则有向图 |
The Bessel Numbers and Bessel Matrices |
投稿时间:2010-01-05 修订日期:2010-05-28 |
DOI:10.3770/j.issn:1000-341X.2011.04.007 |
中文关键词: $k$-途径正则有向图 预距离多项式, 交叉$uv$-局部重数. |
英文关键词:$k$-walk-regular digraph predistance polynomial the crossed $uv$-local multiplicity. |
基金项目:国家自然科学基金(Grant Nos.10771051; 10971052),河北省教育厅科学研究基金(Grant No.2009134), 河北师范大学青年基金(Grant No.L2008Q01). |
|
摘要点击次数: 2631 |
全文下载次数: 2073 |
中文摘要: |
本文定义了$k$-途径正则有向图, 研究了这类图的性质,给出了这类图的一些代数刻画, 并指出当$k=0$时, 该类图便是文献[5]中刘稳等定义的途径正则有向图, 而$k=D$时, 该类图便是文献[2]中由F.Comellas等定义的弱距离正则有向图. |
英文摘要: |
In this paper, we define a class of strongly connected digraph, called the $k$-walk-regular digraph, study some properties of it, provide its some algebraic characterization and point out that the $0$-walk-regular digraph is the same as the walk-regular digraph discussed by Liu and Lin in 2010 and the $D$-walk-regular digraph is identical with the weakly distance-regular digraph defined by Comellas et al in 2004. |
查看全文 查看/发表评论 下载PDF阅读器 |