纪培胜,杨晓玲,陈建慧.交换环上的严格上三角代数上的双导子[J].数学研究及应用,2011,31(6):965~976 |
交换环上的严格上三角代数上的双导子 |
Biderivations of the Algebra of Strictly Upper Triangular Matrices over a Commutative Ring |
投稿时间:2010-04-08 修订日期:2010-05-28 |
DOI:10.3770/j.issn:1000-341X.2011.06.002 |
中文关键词: 双导子 严格上三角矩阵 代数. |
英文关键词:biderivation strictly upper triangular matrix algebra. |
基金项目:国家自然科学基金 (Grant No.10971117). |
|
摘要点击次数: 2423 |
全文下载次数: 2599 |
中文摘要: |
设$N_n(R)$是带有单位元的交换环$R$上的$n\times n$严格上三角矩阵构成的代数.$R$-双线性映射$\phi :N_n(R)\times N_n(R)\longrightarrow N_n(R)$称为双导子是指它关于每一个变元是导子.本文给出了$N_n(R)$上的中心双导子和极端双导子的定义,证明了当$n\geq 5$时,$N_n(R)$每一个双导子可分解为一个内双导子,一个中心双导子和和一个极端双导子之和. |
英文摘要: |
Let $N_n(R)$ be the algebra consisting of all strictly upper triangular $n\times n$ matrices over a commutative ring $R$ with the identity. An $R$-bilinear map $\phi :N_n(R)\times N_n(R)\longrightarrow N_n(R)$ is called a biderivation if it is a derivation with respect to both arguments. In this paper, we define the notions of central biderivation and extremal biderivation of $N_n(R)$, and prove that any biderivation of $N_n(R)$ can be decomposed as a sum of an inner biderivation, central biderivation and extremal biderivation for $n\geq 5$. |
查看全文 查看/发表评论 下载PDF阅读器 |