宋雪丽,侯延仁.一类非自治Brinkman-Forchheimer方程的一致吸引子[J].数学研究及应用,2012,32(1):63~75 |
一类非自治Brinkman-Forchheimer方程的一致吸引子 |
Uniform Attractors for a Non-Autonomous Brinkman-Forchheimer Equation |
投稿时间:2010-04-16 修订日期:2010-10-11 |
DOI:10.3770/j.issn:2095-2651.2012.01.008 |
中文关键词: Galerkin逼近 一致吸引子 非自治Brinkman-Forchheimer方程. |
英文关键词:Galerkin approximation uniform attractor non-autonomous Brinkman-Forchheimer equation. |
基金项目:国家自然科学基金(Grant No.10871156). |
|
摘要点击次数: 3345 |
全文下载次数: 2650 |
中文摘要: |
文中研究了三维非自治Brinkman-Forchheimer方程. 利用Galerkin逼近方法,给出了非自治Brinkman-Forchheimer方程弱解的存在性和唯一性. 接着讨论了弱解的渐进行为, $(H,H)$一致吸引子和$(H,V)$一致吸引子的存在性和结构. 然后证明了$L^2$一致吸引子实际上便是$H^1$一致吸引子. |
英文摘要: |
This paper is concerned with the three-dimensional non-autonomous Brinkman-Forchheimer equation. By Galerkin approximation method, we give the existence and uniqueness of weak solutions for non-autonomous Brinkman-Forchheimer equation. And we investigate the asymptotic behavior of the weak solution, the existence and structures of the $(H,H)$-uniform attractor and $(H,V)$-uniform attractor. Then we prove that an $L^2$-uniform attractor is actually an $H^1$-uniform attractor. |
查看全文 查看/发表评论 下载PDF阅读器 |