王美凤,吉国兴.自伴算子空间上保持Jordan积投影的线性映射[J].数学研究及应用,2012,32(2):235~240 |
自伴算子空间上保持Jordan积投影的线性映射 |
Linear Maps Preserving Projections of Jordan Products on the Space of Self-Adjoint Operators |
投稿时间:2010-06-30 修订日期:2011-10-31 |
DOI:10.3770/j.issn:2095-2651.2012.02.011 |
中文关键词: 自伴算子 Jordan积 非零投影 线性映射. |
英文关键词:self-adjoint operator Jordan product projection linear map. |
基金项目:国家自然科学基金(Grant No.10971123),教育部高等学校博士学科点专项科研基金(Grant No.20090202110001). |
|
摘要点击次数: 3483 |
全文下载次数: 3926 |
中文摘要: |
设$\mathcal {H}$是复的Hilbert空间且$\dim$ $\mathcal {H}$$\geqslant 2$,$\mathcal {B}$$_{s}($$\mathcal {H})$是$\mathcal {H}$上的所有自伴算子的全体.设$\varphi$是$\mathcal {B}$$_{s}(\mathcal {H})$上的线性满射,则$\varphi$保持Jordan积非零投影性当且仅当存在$\mathcal {H}$上的酉算子或反酉算子$U$以及常数$\lambda$满足$\lambda\in\{1,-1\}$,使得对任意的$X\in \mathcal {B}$$_{s}(\mathcal {H})$有$\varphi(X)=\lambda U^*XU$. |
英文摘要: |
Let ${\mathcal {B}}_ {s}(\mathcal {H})$ be the real linear space of all self-adjoint operators on a complex Hilbert space $\mathcal {H}$ with $\dim {\mathcal {H}}\geq 2.$ It is proved that a linear surjective map $\varphi$ on ${\mathcal {B}}_{s}(\mathcal {H})$ preserves the nonzero projections of Jordan products of two operators if and only if there is a unitary or an anti-unitary operator $U$ on $\mathcal {H}$ such that $\varphi(X)=\lambda U^*XU, \forall X \in {\mathcal {B}}_{s}(\mathcal {H})$ for some constant $\lambda$ with $\lambda\in\{1,-1\}.$ |
查看全文 查看/发表评论 下载PDF阅读器 |