谢德政,吴燕青.不含相邻三角形的平面图的无圈边着色[J].数学研究及应用,2012,32(4):407~414 |
不含相邻三角形的平面图的无圈边着色 |
Acyclic Edge Coloring of Planar Graphs without Adjacent Triangles |
投稿时间:2010-07-07 修订日期:2011-12-19 |
DOI:10.3770/j.issn:2095-2651.2012.04.004 |
中文关键词: 无圈边着色 无圈边色数 平面图. |
英文关键词:acyclic edge coloring acyclic edge chromatic number planar graph. |
基金项目: |
|
摘要点击次数: 3077 |
全文下载次数: 2671 |
中文摘要: |
图$G$的一个无圈边着色是一个正常的边着色且不含双色的圈.图$G$的无圈边色数是图$G$的无圈边着色中所用色数的最小者,用$\chi'_{a}(G)$表示. 本文证明了如果$G$是一个不含相邻三角形的平面图,那么$\chi'_{a}(G)\leq \Delta(G)+5$. |
英文摘要: |
An acyclic edge coloring of a graph $G$ is a proper edge coloring such that there are no bichromatic cycles. The \emph{acyclic edge chromatic number} of a graph $G$ is the minimum number $k$ such that there exists an acyclic edge coloring using $k$ colors and is denoted by $\chi'_{a}(G)$. In this paper we prove that $\chi'_{a}(G)\leq \Delta(G)+5$ for planar graphs $G$ without adjacent triangles. |
查看全文 查看/发表评论 下载PDF阅读器 |