龙见仁.一类高阶线性微分方程解的复振荡[J].数学研究及应用,2012,32(4):423~430 |
一类高阶线性微分方程解的复振荡 |
On Complex Oscillation Theory of Solutions of Some Higher Order Linear Differential Equations |
投稿时间:2011-11-27 修订日期:2012-03-27 |
DOI:10.3770/j.issn:2095-2651.2012.04.006 |
中文关键词: 复微分方程 整函数 增长级 零点收敛指数. |
英文关键词:complex differential equations entire function the growth of order the exponent of convergence of the zeros. |
基金项目:国家自然科学基金(Grant No.11171080),贵州省科学技术基金(Grant No.[2010] 07). |
|
摘要点击次数: 2892 |
全文下载次数: 2792 |
中文摘要: |
本文利用Nevanlinna 理论研究一类高阶线性微分方程解的复振荡, 得到已知$A(z)$ 是超越整函数且$\rho(A)<\frac{1}{2}$, $k\geq 2$, 如果方程$f^{(k)}+Af=0$ 有一解满足$\lambda(f)<\rho(A)$, 令$A_{1}=A+h$, 其中$h\not\equiv 0$ 是整函数且$\rho(h)<\rho(A)$,则高阶方程$g^{(k)}+A_{1}(z)g=0$ 没有任何一个解满足$\lambda(g)<\infty$. |
英文摘要: |
In this paper, we shall use Nevanlinna theory of meromorphic functions to investigate the complex oscillation theory of solutions of some higher order linear differential equation. Suppose that $A$ is a transcendental entire function with $\rho(A)<\frac{1}{2}$. Suppose that $k\geq 2$ and $f^{(k)}+A(z)f=0$ has a solution $f$ with $\lambda(f)<\rho(A)$, and suppose that $A_{1}=A+h$, where $h\not\equiv 0$ is an entire function with $\rho(h)<\rho(A)$. Then $g^{(k)}+A_{1}(z)g=0$ does not have a solution $g$ with $\lambda(g)<\infty$. |
查看全文 查看/发表评论 下载PDF阅读器 |