汪先超,江成顺.基于欧姆加热模型的一类非局部双曲方程解的渐近性态[J].数学研究及应用,2012,32(4):476~484 |
基于欧姆加热模型的一类非局部双曲方程解的渐近性态 |
Asymptotic Behavior of a Non-Local Hyperbolic Equation Modelling Ohmic Heating |
投稿时间:2010-12-28 修订日期:2011-12-19 |
DOI:10.3770/j.issn:2095-2651.2012.04.012 |
中文关键词: 非局部双曲方程 渐近性态 爆破 爆破速率. |
英文关键词:non-local hyperbolic equation asymptotical behavior blow-up blow-up rate. |
基金项目:国家高技术研究发展计划``863计划'' (Grant No.2012AA011603). |
|
摘要点击次数: 3253 |
全文下载次数: 2540 |
中文摘要: |
本文研究了基于欧姆加热模型的一类非局部双曲问题解的渐近性态.研究发现该双曲问题的解只有三种情况:问题解整体有界且其唯一稳态解渐近稳定;问题解无穷远爆破;问题解有限时刻爆破.如果问题解在有限时刻爆破,该解在(0,1]的任意子区间上一致爆破,且爆破速度为$\lim_{t\rightarrow T^{*}-}u(x,t)(T^{*}-t)^{\frac{1}{\alpha+\beta p-1}}=(\frac{\alpha+\beta p-1}{1-\alpha})^{\frac{1}{1-\alpha-\beta p}}$,这里$T^*$是爆破时间. |
英文摘要: |
In this paper, the asymptotic behavior of a non-local hyperbolic problem modelling Ohmic heating is studied. It is found that the behavior of the solution of the hyperbolic problem only has three cases: the solution is globally bounded and the unique steady state is globally asymptotically stable; the solution is infinite when $t\rightarrow\infty$; the solution blows up. If the solution blows up, the blow-up is uniform on any compact subsets of $(0,1]$ and the blow-up rate is $\lim_{t\rightarrow T^{*}-}u(x,t)(T^{*}-t)^{\frac{1}{\alpha+\beta p-1}}=(\frac{\alpha+\beta p-1} {1-\alpha})^{\frac{1}{1-\alpha-\beta p}}$, where $T^{*}$ is the blow-up time. |
查看全文 查看/发表评论 下载PDF阅读器 |