张兴秋.Banach空间非线性二阶脉冲奇异积分-微分方程积分边值问题的正解[J].数学研究及应用,2012,32(5):599~614 |
Banach空间非线性二阶脉冲奇异积分-微分方程积分边值问题的正解 |
Positive Solutions for a Second-Order Nonlinear Impulsive Singular Integro-Differential Equation with Integral Conditions in Banach Spaces |
投稿时间:2010-12-28 修订日期:2011-04-18 |
DOI:10.3770/j.issn:2095-2651.2012.05.009 |
中文关键词: 脉冲奇异积分-微分方程 正解 M\"onch 不动点定理 非紧性测度. |
英文关键词:impulsive singular integro-differential equation positive solution M\"onch fixed point theorem measure of noncompactness. |
基金项目:山东省优秀中青年科学家奖励基金(Grant No.BS2010SF004),山东省高等学校科技计划(Grant No.J10LA53),中国博士后科学基金(Grant No.20110491154),国家自然科学基金(Grant No.10971179). |
|
摘要点击次数: 3260 |
全文下载次数: 2693 |
中文摘要: |
利用不动点理论获得了Banach空间中一类非线性二阶脉冲奇异积分-微分方程积分边值问题的正解,并给出了一个具体的例子. |
英文摘要: |
The existence of positive solutions to a boundary value problem of second-order impulsive singular integro-differential equation with integral boundary conditions in a Banach space is obtained by means of fixed point theory. Moreover, an application is also given to illustrate the main result. |
查看全文 查看/发表评论 下载PDF阅读器 |