王海军,程曹宗,范晓冬.二阶($F, \alpha,\rho, d,p$) 一致凸性与极小极大分式规划的对偶[J].数学研究及应用,2013,33(2):164~174 |
二阶($F, \alpha,\rho, d,p$) 一致凸性与极小极大分式规划的对偶 |
Second Order ($F, \alpha,\rho, d,p$)-Univexity and Duality for Minimax Fractional Programming |
投稿时间:2011-11-24 修订日期:2012-09-03 |
DOI:10.3770/j.issn:2095-2651.2013.02.004 |
中文关键词: 二阶($F, \alpha,\rho, d,p$) 一致凸性 极小极大分式规划 二阶对偶 最优性条件. |
英文关键词:second order ($F, \alpha,\rho, d,p$)-univexity minimax fractional programming second order duality optimality conditions. |
基金项目:国家自然科学基金(Grant No.11101016). |
|
摘要点击次数: 3332 |
全文下载次数: 2168 |
中文摘要: |
本文我们引入一类二阶($F, \alpha,\rho, d,p$) 一致凸函数的概念.考虑了极小极大分式规划问题的两种对偶模型,在相关函数凸性假设条件下得到了相应的对偶定理. |
英文摘要: |
In this paper, we introduce a class of generalized second order ($F, \alpha,\rho, d,p$)-univex functions. Two types of second order dual models are considered for a minimax fractional programming problem and the duality results are established by using the assumptions on the functions involved. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|