郝晓红,周宗福.一类分数阶微分方程多点边值问题解的存在性[J].数学研究及应用,2013,33(2):175~188 |
一类分数阶微分方程多点边值问题解的存在性 |
The Existence of Solutions to a Class of Multi-point Boundary Value Problem of Fractional Differential Equation |
投稿时间:2011-11-26 修订日期:2012-10-09 |
DOI:10.3770/j.issn:2095-2651.2013.02.005 |
中文关键词: 分数阶微分方程 多点边值问题 重合度. |
英文关键词:fractional differential equation multi-point boundary value problem coincidence degree. |
基金项目:国家自然科学基金(Grant No.11071001), 安徽省自然科学基金(Grant No.1208085MA13), 安徽大学211工程项目(Grant No.KJTD002B). |
|
摘要点击次数: 3497 |
全文下载次数: 2126 |
中文摘要: |
本文讨论下面一类分数阶微分方程多点边值问题 $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$其中$3<\alpha \leq 4$是一个实数.通过应用Mawhin重合度理论和构建适当的算子,得到了该边值问题解的存在性结果. |
英文摘要: |
In this paper, we consider the following multi-point boundary value problem of fractional differential equation $$\align &D^{\alpha}_{0+}u(t) = f(t, u(t),~D^{\alpha-1}_{0+}u(t), D^{\alpha-2}_{0+}u(t), D^{\alpha-3}_{0+}u(t)),~~t\in(0,1), \\&I^{4-\alpha}_{0+}u(0) = 0, ~D^{\alpha-1}_{0+}u(0)=\displaystyle{\sum_{i=1}^{m}}\alpha_{i}D^{\alpha-1}_{0+}u(\xi_{i}),\\&D^{\alpha-2}_{0+}u(1)=\sum\limits_ {j=1}^{n}\beta_{j} D^{\alpha-2}_{0+}u(\eta_{j}),~D^{\alpha-3}_{0+}u(1)-D^{\alpha-3}_{0+}u(0)=D^{\alpha-2}_{0+}u(\frac{1}{2}),\endalign$$ where $3<\alpha \leq 4$ is a real number. By applying Mawhin coincidence degree theory and constructing suitable operators, some existence results of solutions can be established. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|