胡卫敏,巴哈尔古丽,蒋达清.一维$P$-Laplace二阶差分系统奇异边值问题正解的存在性[J].数学研究及应用,2013,33(2):189~203 |
一维$P$-Laplace二阶差分系统奇异边值问题正解的存在性 |
Existence of Positive Solutions for Singular One-Dimensional $P$-Laplace BVP of the Second-Order Difference Systems |
投稿时间:2011-12-15 修订日期:2012-10-12 |
DOI:10.3770/j.issn:2095-2651.2013.02.006 |
中文关键词: 分数阶微分方程 格林函数 正解 不动点定理 边值问题. |
英文关键词:multiple solutions singular existence discrete boundary value problem. |
基金项目:新疆普通高校重点培育学科开放课题(Grant No.XJZDXK2011004),国家自然科学基金(Grant No.10971021). |
|
摘要点击次数: 3329 |
全文下载次数: 2143 |
中文摘要: |
应用锥压缩锥拉伸不动点定理和Leray-Schauder 抉择定理研究了一类具有P-Laplace算子的奇异离散边值问题$$\left\{\begin{array}{l}\Delta[\phi (\Delta x(i-1))]+ q_{1}(i)f_{1}(i,x(i),y(i))=0, ~~~i\in \{1,2,...,T\}\\\Delta[\phi (\Delta y(i-1))]+ q_{2}(i)f_{2}(i,x(i),y(i))=0,\\x(0)=x(T+1)=y(0)=y(T+1)=0,\end{array}\right.$$的单一和多重正解的存在性,其中$\phi(s) = |s|^{p-2}s, ~p>1$,非线性项$f_{k}(i,x,y)(k=1,2)$在$(x,y)=(0,0)$具有奇性. |
英文摘要: |
In this paper we establish the existence of single and multiple positive solutions to the following singular discrete boundary value problem $$\left\{\begin{array}{l}\Delta[\phi (\Delta x(i-1))]+ q_{1}(i)f_{1}(i,x(i),y(i))=0, ~~i\in \{1,2,\ldots,T\}\\\Delta[\phi (\Delta y(i-1))]+ q_{2}(i)f_{2}(i,x(i),y(i))=0,\\x(0)=x(T+1)=y(0)=y(T+1)=0,\end{array}\right.\tag 1.1$$ where $\phi(s)=|s|^{p-2}s$, $p>1$ and the nonlinear terms $f_{k}(i,x,y)~(k=1,2)$ may be singular at $(x,y)=(0,0)$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|