刘玉凤,余小龙,霍利军.2-极大子群的$F_s$-拟正规性[J].数学研究及应用,2013,33(4):412~418 |
2-极大子群的$F_s$-拟正规性 |
On $\mathfrak{F_{\mathrm s}}$-Quasinormality of 2-Maximal Subgroups |
投稿时间:2012-04-08 修订日期:2012-11-25 |
DOI:10.3770/j.issn:2095-2651.2013.04.004 |
中文关键词: $F_s$-拟正规子群 Sylow子群 极大子群 2-极大子群. |
英文关键词:$\mathfrak{F_{\mathrm s}}$-quasinormal subgroup Sylow subgroup maximal subgroup $2$-maximal subgroup. |
基金项目:国家自然科学基金(Grant No.11071147),国家高校博士项目基金(Grant No.20113402110036). |
|
摘要点击次数: 3161 |
全文下载次数: 2585 |
中文摘要: |
$F$是一个群系. $G$的子群$H$在$G$中称为$F_s$-拟正规的,如果存在$G$的正规子群$T$,使得$HT$在$G$中是$s$-置换的并且$(H\cap T)H_G/H_G$包含在$G/H_G$的$F$超中心$Z^F_\infty(G/H_G)$中.本文利用$F_s$-拟正规子群研究了有限群的结构.获得了某些新的结果. |
英文摘要: |
Let $\frak{F}$ be a class of finite groups. A subgroup $H$ of a finite group $G$ is said to be $\mathfrak{F_{\mathrm s}}$-quasinormal in $G$ if there exists a normal subgroup $T$ of $G$ such that $HT$ is $s$-permutable in $G$ and $(H\cap T)H_G/H_G$ is contained in the $\frak{F}$-hypercenter $Z_\infty ^\frak{F} (G/H_G)$ of $G/H_G$. In this paper, we use $\mathfrak{F_{\mathrm s}}$-quasinormal subgroups to study the structure of finite groups. Some new results are obtained. |
查看全文 查看/发表评论 下载PDF阅读器 |