高绪涛,郭启龙.沿着不连通曲面的Heegaard分解的不可稳定化的融合积[J].数学研究及应用,2013,33(4):475~482 |
沿着不连通曲面的Heegaard分解的不可稳定化的融合积 |
The Unstabilized Amalgamation of Heegaard Splittings along Disconnected Surfaces |
投稿时间:2012-03-06 修订日期:2012-05-22 |
DOI:10.3770/j.issn:2095-2651.2013.04.010 |
中文关键词: 不可稳定化 距离 融合积 Heegaard分解. |
英文关键词:unstabilized distance amalgamation Heeaggard splitting. |
基金项目:国家自然科学基金 (Grant No.10901029). |
|
摘要点击次数: 3214 |
全文下载次数: 2373 |
中文摘要: |
令$M$为一个三维流形, $\mathcal{F}=\{F_{1},F_{2},\ldots,F_{n}\}$为在$M$中的一族互不相交且互不平行的本质闭曲面,同时$\partial_0M$为$\partial M$的若干边界连通分支.假设$M-\bigcup_{F_{i} \in \mathcal{F}} F_{i}\times (-1,1)$有$k$个分支$M_1,M_2,\ldots,M_k$.若每个$M_i$都有一个Heegaard分解$V_{i} \bigcup_{S_{i}} W_{i}$且$d(S_i)>4(g(M_1)+\cdots+g(M_k))$,则任一$M$相对于$\partial_0M$的最小Heegaard分解都是由$M_1,M_2,\ldots,M_k$的最小Heegaard分解其稳定化做融合积和自融合积获得. |
英文摘要: |
Let $M$ be a 3-manifold, $\mathcal{F}$$= \{F_{1},F_{2},\ldots,F_{n}\}$ be a collection of essential closed surfaces in $M$ (for any $i,j\in \{1,...,n\}$, if $i\neq j$, $F_{i}$ is not parallel to $F_{j}$ and $F_i\cap F_j=\emptyset$) and $\partial_{0}M$ be a collection of components of $\partial M$. Suppose $M- \bigcup_{F_{i} \in \mathcal{F}} F_{i}\times (-1,1)$ contains $k$ components $M_{1},M_{2},\ldots,M_{k}$. If each $M_{i}$ has a Heegaard splitting $V_{i} \bigcup_{S_{i}} W_{i}$ with $d(S_{i}) > 4(g(M_{1})+ \cdots +g(M_{k}))$, then any minimal Heegaard splitting of M relative to $\partial_{0}M$ is obtained by doing amalgamations and self-amalgamations from minimal Heegaard splittings or $\partial$-stabilization of minimal Heegaard splittings of $M_{1},M_{2}, \ldots, M_{k}$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|