姚庆六.具有正Green函数的奇异Sturm-Liouville边值问题的正解[J].数学研究及应用,2013,33(5):561~568 |
具有正Green函数的奇异Sturm-Liouville边值问题的正解 |
Positive Solutions of Singular Sturm-Liouville Boundary Value Problems with Positive Green Function |
投稿时间:2012-05-24 修订日期:2012-09-03 |
DOI:10.3770/j.issn:2095-2651.2013.05.005 |
中文关键词: 奇异常微分方程 Sturm-Liouville边值问题 正解 存在性与多解性. |
英文关键词:singular ordinary differential equation Sturm-Liouville boundary value problem positive solution existence and multiplicity. |
基金项目:国家自然科学基金(Grant No.11071109). |
|
摘要点击次数: 2935 |
全文下载次数: 2551 |
中文摘要: |
考察了具有正Green函数的奇异Sturm-Liouville边值问题的正解存在性与多解性,其中相对于空间变元非线性项可以是超强奇异的.通过构造适当的控制函数,精确估计了解的先验界.利用锥压缩-拉伸型的Guo-Krasnosel'skii不动点定理,证明了几个存在结论. |
英文摘要: |
The existence and multiplicity of positive solutions are studied for a singular Sturm-Liouville boundary value problem with positive Green function, where the nonlinearity may be super-strongly singular with respect to the space variable. By constructing suitable control functions, the a priori bound of solution is exactly estimated. By applying the Guo-Krasnosel'skii fixed point theorem of cone expansion-compression type, several existence results are proved. |
查看全文 查看/发表评论 下载PDF阅读器 |