邵勇,任苗苗.分配格和素域生成的半环簇[J].数学研究及应用,2014,34(5):529~534 |
分配格和素域生成的半环簇 |
The Variety of Semirings Generated by Distributive Lattices and Prime Fields |
投稿时间:2013-08-09 修订日期:2014-04-16 |
DOI:10.3770/j.issn:2095-2651.2014.05.003 |
中文关键词: 素域 分配格 次直不可约半环 簇. |
英文关键词:prime field distributive lattice subdirectly irreducible semiring variety. |
基金项目:中国博士后科学研究基金(Grant No.2011M501466);陕西省自然科学基金(Grant No.2011JQ1017). |
|
摘要点击次数: 3012 |
全文下载次数: 2647 |
中文摘要: |
令${\cal V}$ 表示由而元素分配格 $B_2$ 和$k$个素域$F_{p_{1}},\,\cdots,\,F_{p_{k}}$所生成的半环簇,即${\cal V}={\bf HSP}\{B_{2},\,F_{p_{1}},\,\cdots,\,F_{p_{k}}\}$. 本文证明了半环簇${\cal V}$是有限基底的. 进一步, 在同构意义下得到了二元素分配格 $B_{2}$ 和素域$F_{p_{1}},\,\cdots,\,F_{p_{k}}$是${\cal V}$中仅有的次直不可约成员.所获结果推广了已有的相关结果. |
英文摘要: |
Let ${\cal V}$ be the variety generated by two-element distributive lattice $B_2$ and $k$ prime fields $F_{p_{1}},\ldots,F_{p_{k}}$. That is to say that ${\cal V}={\bf HSP}\{B_{2},\,F_{p_{1}},\ldots,F_{p_{k}}\}$. It is proved that the variety ${\cal V}$ is finitely based. Also, the two-element distributive lattice $B_{2}$ and prime fields $F_{p_{1}},\ldots,F_{p_{k}}$ are, up to isomorphism, the only subdirectly irreducible semirings in ${\cal V}$. Some known results are extended and enriched. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|