田永革,郭文星.三个矩阵乘积厄米特Moore-Penrose逆的等式与不等式[J].数学研究及应用,2015,35(3):321~329 |
三个矩阵乘积厄米特Moore-Penrose逆的等式与不等式 |
Some Equalities and Inequalities for the Hermitian Moore-Penrose Inverse of Triple Matrix Product with Applications |
投稿时间:2014-08-14 修订日期:2014-12-22 |
DOI:10.3770/j.issn:2095-2651.2015.03.010 |
中文关键词: Moore-Penrose逆 反序律 秩 惯量 偏序 |
英文关键词:Moore-Penrose inverse reverse-order law rank inertia L\"owner partial ordering |
基金项目:国家自然科学基金 (Grant No.11271384). |
|
摘要点击次数: 2954 |
全文下载次数: 2645 |
中文摘要: |
通过矩阵的秩和惯量公式研究矩阵广义逆之间的关系,建立了三个矩阵乘积的厄米特Moore-Penrose逆的一些等式与不等式.作为应用,给出了若干两个矩阵之和厄米特Moore-Penrose逆的等式与不等式. |
英文摘要: |
We investigate relationships between the Moore-Penrose inverse $(ABA^{*})^{\dag}$ and the product $[(AB)^{(1,2,3)}]^{*}B(AB)^{(1,2,3)}$ through some rank and inertia formulas for the difference of $(ABA^{*})^{\dag} - [(AB)^{(1,2,3)}]^{*}B(AB)^{(1,2,3)}$, where $B$ is Hermitian matrix and $(AB)^{(1,2,3)}$ is a $\{1,\, 2,\,3\}$-inverse of $AB$. We show that there always exists an $(AB)^{(1,2,3)}$ such that $(ABA^{*})^{\dag}=[(AB)^{(1,2,3)}]^{*}B(AB)^{(1,2,3)}$ holds. In addition, we also establish necessary and sufficient conditions for the two inequalities $(ABA^{*})^{\dag} \succ [(AB)^{(1,2,3)}]^{*}B(AB)^{(1,2,3)}$ and $(ABA^{*})^{\dag} \prec [(AB)^{(1,2,3)}]^{*}B(AB)^{(1,2,3)}$ to hold in the L\"owner partial ordering. Some variations of the equalities and inequalities are also presented. In particular, some equalities and inequalities for the Moore-Penrose inverse of the sum $A + B$ of two Hermitian matrices $A$ and $B$ are established. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|