占燕燕,肖丽鹏.系数的级相同的高阶微分方程解的增长性[J].数学研究及应用,2015,35(4):387~399 |
系数的级相同的高阶微分方程解的增长性 |
The Growth of Solutions of Higher Order Differential Equations with Coefficients Having the Same Order |
投稿时间:2014-06-17 修订日期:2015-05-04 |
DOI:10.3770/j.issn:2095-2651.2015.04.004 |
中文关键词: 增长级 超级 零点收敛指数;微分方程 |
英文关键词:order of growth hyper-order exponent of convergence of zero sequence differential equation |
基金项目:国家自然科学基金(Grant Nos.11301232;11171119),江西省自然科学基金(Grant No.20132BAB211009),江西省教育厅青年科学基金(Grant No.GJJ12207). |
|
摘要点击次数: 2484 |
全文下载次数: 2148 |
中文摘要: |
本文研究了某类高阶齐次与非齐次微分方程解的增长性.对于方程$$f^{(k)}+(A_{k-1,1}(z)e^{P_{k-1}(z)}+A_{k-1,2}(z)e^{Q_{k-1}(z)})f^{(k-1)}+\cdots+(A_{0,1}(z)e^{P_{0}(z)}+A_{0,2}(z)e^{Q_{0}(z)})f = F,$$ 其中$F,A_{ji}$是整函数, $P_j(z),Q_j(z)(j=0,1,\ldots,k-1;i=1,2)$是次数为$n(\geq1)$的多项式, $k\geq2,$我们得到如下结果:若$F\equiv0,$方程的所有非零解的增长级为无穷大;若$F\not\equiv0,$方程至多有一个有限级解,其余解的级均满足$\overline{\lambda}(f)=\lambda(f)=\sigma(f)=\infty.$ |
英文摘要: |
In this paper, we consider the growth of solutions of some homogeneous and nonhomogeneous higher order differential equations. It is proved that under some conditions for entire functions $F,A_{ji}$ and polynomials $P_j(z),Q_j(z)~(j=0,1,\ldots,k-1;i=1,2)$ with degree $n\geq 1$, the equation $f^{(k)}+(A_{k-1,1}(z)e^{P_{k-1}(z)}+A_{k-1,2}(z)e^{Q_{k-1}(z)})f^{(k-1)}+\cdots+(A_{0,1}(z)e^{P_{0}(z)}+A_{0,2}(z)e^{Q_{0}(z)})f= F,$ where $k\geq2$, satisfies the properties: When $F\equiv 0$, all the non-zero solutions are of infinite order; when $F\not\equiv 0$, there exists at most one exceptional solution $f_0$ with finite order, and all other solutions satisfy $\overline{\lambda}(f)=\lambda(f)=\sigma(f)=\infty$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|