高振滨,李信明,孙广毅,刘宜春.环状硅酸盐图的友好指数集[J].数学研究及应用,2015,35(6):591~604 |
环状硅酸盐图的友好指数集 |
On Friendly Index Sets of Cyclic Silicates |
投稿时间:2014-10-16 修订日期:2015-07-08 |
DOI:10.3770/j.issn:2095-2651.2015.06.001 |
中文关键词: 顶点标号 友好标号 亲切性 友好指数集 圈 $CS(n, m)$ 算术级数 |
英文关键词:vertex labeling friendly labeling cordiality friendly index set cycle CS$(n, m)$ arithmetic progression |
基金项目:国家自然科学基金 (Grant No.11371109). |
|
摘要点击次数: 2760 |
全文下载次数: 2464 |
中文摘要: |
设图$G$ 的顶点集是$V(G)$,边集是 $E(G)$. 一个顶点标号$f: V(G)\rightarrow Z_{2}$导出一个定义为 $f^{*}(xy) = f(x) + f(y)$ 的边标号($ xy$ 是边)$ f^{*} : E(G)\rightarrow Z_{2}$.对于$i\in Z_{2}$,令$ v_{f}(i) =|\{v\in V(G) : f(v) = i\}|$ 和 $e_{f}(i) = |\{e\in E(G) : f^{*}(e) = i\}|$. 如果$| v_{f}(0)-v_{f}(1) | \leq 1$,则$G$ 的标号$f$ 被称为友好的. 图$G$的一个友好指标集, 记为$FI(G)$, 定义为 $\{|e_{f}(0) - e_{f}(1)|$: 顶点标号$f$ 是友好的$\}$. 这是图亲切性的广义化.我们研究环状硅酸盐图$CS(n, m)$的友好指数集. |
英文摘要: |
Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$. A labeling $f : V(G)\rightarrow Z_{2}$ induces an edge labeling $ f^{*} : E(G)\rightarrow Z_{2}$ defined by $f^{*}(xy) = f(x) + f(y)$, for each edge $ xy\in E(G)$. For $i \in Z_{2}$, let $ v_{f}(i) =|\{v \in V(G) : f(v) = i\}|$ and $e_{f}(i) = |\{e\in E(G) : f^{*}(e) = i\}|$. A labeling $f$ of a graph $G$ is said to be friendly if $| v_{f}(0)-v_{f}(1) | \leq 1$. The friendly index set of the graph $G$, denoted ${\rm FI}(G)$, is defined as $\{|e_{f}(0) - e_{f}(1)|$: the vertex labeling $f$ is friendly$\}$. This is a generalization of graph cordiality. We investigate the friendly index sets of cyclic silicates CS$(n, m)$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|