偶世坤,钟金.交换环上一类矩阵环上具有可导性的非线性映射[J].数学研究及应用,2015,35(6):625~633 |
交换环上一类矩阵环上具有可导性的非线性映射 |
Nonlinear Maps Satisfying Derivability of a Class of Matrix Ring over Commutative Rings |
投稿时间:2014-09-17 修订日期:2015-04-25 |
DOI:10.3770/j.issn:2095-2651.2015.06.004 |
中文关键词: 具有可导性的映射 导子 严格上三角矩阵 交换环 |
英文关键词:maps satisfying derivability derivations strictly upper triangular matrices commutative rings |
基金项目:国家自然科学基金(Grant Nos.11171343; 11426121),江西理工大学科研基金(Grant Nos.NSFJ2014--K12; NSFJ2015--G24). |
|
摘要点击次数: 2596 |
全文下载次数: 2245 |
中文摘要: |
设$R$是任意的有单位元的交换环, ${N}_n(R)$是$R$上所有$n\times n$严格上三角矩阵组成的集合. 本文详细刻画了${N}_n(R)$中所有满足$\phi(xy)=\phi(x)y+x\phi(y)$的变换$\phi$ ($\phi$ 不必具有线性或可加性的条件). 作为结论的应用, 本文对${N}_n(R)$的加法导子和导子也进行了描述. |
英文摘要: |
Let $R$ be an arbitrary commutative ring with identity, and let ${N}_n(R)$ be the set consisting of all $n\times n$ strictly upper triangular matrices over $R$. In this paper, we give an explicit description of the maps (without linearity or additivity assumption) $\phi:{N}_n(R)\rightarrow {N}_n(R)$ satisfying $\phi(xy)=\phi(x)y+x\phi(y)$. As a consequence, additive derivations and derivations of ${N}_n(R)$ are also described. |
查看全文 查看/发表评论 下载PDF阅读器 |