王建军.亚紧空间的可数乘积[J].数学研究及应用,2015,35(6):692~700 |
亚紧空间的可数乘积 |
Metacompactness in Countable Products |
投稿时间:2015-01-27 修订日期:2015-04-27 |
DOI:10.3770/j.issn:2095-2651.2015.06.011 |
中文关键词: 亚紧 $\sigma$-亚紧 \v{C}ech-散射 |
英文关键词:metacompact $\sigma$-metacompact \v{C}ech-scattered |
基金项目:四川省教育厅科研经费 (Grant No.14ZB0007). |
|
摘要点击次数: 2618 |
全文下载次数: 2092 |
中文摘要: |
主要研究亚紧空间的可数乘积性, 首先证明如果$Y$是遗传亚紧空间且$\{X_n:n\in\omega\}$是由\v{C}ech-散射亚紧构成的可数空间族, 则一下结论等价:(1) $Y\times\prod_{n\in\omega}X_n$ 是亚紧的,(2) $Y\times\prod_{n\in\omega}X_n$ 是可数亚紧的,(3) $Y\times\prod_{n\in\omega}X_n$ 是 ortho-紧的.进而推广了文献 [Tanaka, Tsukuba. J. Math., 1993, 17: 565--587] 中的主要结果. 最后, 证明如果$Y$是遗传$\sigma$-亚紧空间且$\{X_n:n\in\omega\}$是由\v{C}ech-散射$\sigma$-亚紧空构成的可数空间族, 则乘积$Y\times\prod_{n\in\omega}X_n$是$\sigma$-亚紧的. |
英文摘要: |
In this paper, we present that if $Y$ is a hereditarily metacompact space and $\{X_n:n\in\omega\}$ is a countable collection of \v{C}ech-scattered metacompact spaces, then the followings are equivalent: (1)~~$Y\times\prod_{n\in\omega}X_n$ is metacompact, (2)~~$Y\times\prod_{n\in\omega}X_n$ is countable metacompact, (3)~~$Y\times\prod_{n\in\omega}X_n$ is orthocompact. Thereby, this result generalizes Theorem 5.4 in [Tanaka, Tsukuba. J. Math., 1993, 17: 565--587]. In addition, we obtain that if $Y$ is a hereditarily $\sigma$-metacompact space and $\{X_n:n\in\omega\}$ is a countable collection of \v{C}ech-scattered $\sigma$-metacompact spaces, then the product $Y\times\prod_{n\in\omega}X_n$ is $\sigma$-metacompact. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|