李朋,周疆.新的齐型BMO, Lipschitz空间上的奇异积分算子[J].数学研究及应用,2016,36(1):97~108 |
新的齐型BMO, Lipschitz空间上的奇异积分算子 |
Singular Integral Operators on New BMO and Lipschitz Spaces of Homogeneous Type |
投稿时间:2015-01-17 修订日期:2015-05-27 |
DOI:10.3770/j.issn:2095-2651.2016.01.012 |
中文关键词: 奇异积分算子 BMO空间 Lipschitz空间 热核 齐型空间 |
英文关键词:singular integral operators BMO spaces Lipschitz spaces heat kernel spaces of homogeneous type |
基金项目:国家自然科学基金(Grant Nos.11261055; 11161044) |
|
摘要点击次数: 2818 |
全文下载次数: 2150 |
中文摘要: |
设$(X,d,\mu)$是一个齐型空间, ${\rm BMO}_A(X)$和${\rm Lip}_A(\beta,X)$是分别被Duong, Yan和Tang引进的与恒等逼近算子$\{A_t\}_{t>0}$有关的BMO,Lipschitz型空间. 假设$T$是$ L^2(X)$上的线性有界算子, 作者找到了使得$T$从${\rm BMO}(X)$到${\rm BMO}_A(X)$和从${\rm Lip}(\beta, X)$到${\rm Lip}_A(\beta,X)$的充分条件. 作为应用, Calder\'on-Zygmund 算子在${\rm BMO}(X)$和${\rm Lip}(\beta, X)$上的有界性也被得到. |
英文摘要: |
Let $(X,d,\mu)$ be a space of homogeneous type, ${\rm BMO}_A(X)$ and ${\rm Lip}_A(\beta,X)$ be the space of BMO type, lipschitz type associated with an approximation to the identity $\{A_t\}_{t>0}$ and introduced by Duong, Yan and Tang, respectively. Assuming that $T$ is a bounded linear operator on $L^2(X)$, we find the sufficient condition on the kernel of $T$ so that $T$ is bounded from ${\rm BMO}(X)$ to ${\rm BMO}_A(X)$ and from ${\rm Lip}(\beta, X)$ to ${\rm Lip}_A(\beta,X)$. As an application, the boundedness of Calder\'on-Zygmund operators with nonsmooth kernels on ${\rm BMO}(\mathbb{R}^n)$ and ${\rm Lip}(\beta, \mathbb{R}^n)$ are also obtained. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|