于四勇,赵海兴,毛亚平,肖玉芝.二树的ABC指标[J].数学研究及应用,2016,36(2):140~150 |
二树的ABC指标 |
On the Atom-Bond Connectivity Index of Two-Trees |
投稿时间:2015-02-09 修订日期:2015-09-14 |
DOI:10.3770/j.issn:2095-2651.2016.02.002 |
中文关键词: 图 2-树 ABC指标 |
英文关键词:graph two-trees atom-bond connectivity index |
基金项目:国家自然科学基金项目(Grant Nos.61164005; 61440005;11161037), 教育部重点实验室和创新团队资助(Grant No.IRT_15R40), 教育部春晖计划项目(Grant No.Z2014022), 青海省自然科学基金项目(Grant Nos.2013-Z-Y17; 2014-ZJ-907; 2014-ZJ-721). |
|
摘要点击次数: 3026 |
全文下载次数: 2357 |
中文摘要: |
设$G$是一个图,图G的ABC指标(atom-bond connectivity)由Estrada, Torres, Rodr\'{\i}guez 和 Gutman于1998提出,其定义如下:$$ABC(G)\sqrt{\frac{1}{d_i}+\frac{1}{d_j}-\frac{2}{{d_i}{d_j}}},$$和式取遍$G$所有的边 ${v_i}{v_j}$, $d_i$表示顶点$v_i$的度. 本文中给出了具有n个顶点的二树ABC指标的上界,即$ABC(G)\le(2n-4)\frac{\sqrt{2}}{2}+\frac{\sqrt{2n-4}}{n-1}$, 并确定了具有第一大和第二大ABC指标的二树. |
英文摘要: |
The atom-bond connectivity $(ABC)$ index of a graph $G$, introduced by Estrada, Torres, Rodr\'{\i}guez and Gutman in 1998, is defined as the sum of the weights $\sqrt{\frac{1}{d_i}+\frac{1}{d_j}-\frac{2}{{d_i}{d_j}}}$ of all edges ${v_i}{v_j}$ of $G$, where $d_i$ denotes the degree of the vertex $v_i$ in $G$. In this paper, we give an upper bound of the $ABC$ index of a two-tree $G$ with $n$ vertices, that is, $ABC(G)\le(2n-4)\frac{\sqrt{2}}{2}+\frac{\sqrt{2n-4}}{n-1}$. We also determine the two-trees with the maximum and the second maximum ABC index. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|