陈瑞鹏,李小亚.带阻尼项的二阶奇异耦合系统的正周期解[J].数学研究及应用,2017,37(4):435~448 |
带阻尼项的二阶奇异耦合系统的正周期解 |
Positive Periodic Solutions of Second-Order Singular Coupled Systems with Damping Terms |
投稿时间:2016-12-08 修订日期:2017-05-17 |
DOI:10.3770/j.issn:2095-2651.2017.04.005 |
中文关键词: 正周期解 奇异耦合系统 Schauder不动点定理 弱奇异性 |
英文关键词:positive periodic solutions singular coupled systems Schauder's fixed point theorem weak singularities |
基金项目:宁夏高等学校科学研究项目(Grant No.NGY2015141). |
|
摘要点击次数: 2540 |
全文下载次数: 1748 |
中文摘要: |
运用Schauder不动点定理和反极大值原理, 为二阶奇异耦合系统$$\left\{ \aligned x''+p_1(t)x'+q_1(t)x=f_1(t,y(t))+c_1(t),\\ y''+p_2(t)y'+q_2(t)y=f_2(t,x(t))+c_2(t)\\ \endaligned\right.$$ 建立了正周期解的存在性定理, 其中$p_i,\ q_i,\ c_i\in C(\mathbb{R}/T\mathbb{Z};\mathbb{R})$, $i=1,2$; $f_1,\ f_2\in C(\mathbb{R}/T\mathbb{Z}\times(0,\infty),\mathbb{R})$且在$0$处有奇性. 本文的主要结果推广和发展了已有文献的相应结论. |
英文摘要: |
We establish the existence of positive periodic solutions of the second-order singular coupled systems $$\left\{ \aligned x''+p_1(t)x'+q_1(t)x=f_1(t,y(t))+c_1(t),\\ y''+p_2(t)y'+q_2(t)y=f_2(t,x(t))+c_2(t),\\ \endaligned\right.$$ where $p_i,\ q_i,\ c_i\in C(\mathbb{R}/T\mathbb{Z};\mathbb{R}),\ i=1,2$;\ \ $f_1,\ f_2\in C(\mathbb{R}/T\mathbb{Z}\times(0,\infty),\mathbb{R})$ and may be singular near the zero. The proof relies on Schauder's fixed point theorem and anti-maximum principle. Our main results generalize and improve those available in the literature. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|