王松柏,温金秋.与截面相关的Morrey空间与奇异积分[J].数学研究及应用,2017,37(4):455~465 |
与截面相关的Morrey空间与奇异积分 |
Morrey Spaces Associated to the Sections and Singular Integrals |
投稿时间:2016-08-07 修订日期:2017-02-27 |
DOI:10.3770/j.issn:2095-2651.2017.04.007 |
中文关键词: Morrey空间 Campanato空间 Monge-Amp\`ere奇异积分 |
英文关键词:Morrey space Campanato space Monge-Amp\`ere singular integral |
基金项目:湖北省科技厅青年人才项目支持(Grant No.Q20162504). |
|
摘要点击次数: 2784 |
全文下载次数: 2099 |
中文摘要: |
设$\mathcal F$是与Monge-Amp\`ere紧密相关的一族截面, $\mu$是一个双倍测度, 我们定义了与之相关的Morre空间$\mathcal M^{p,q}_\mathcal F(\mathbb R^n)$和Campanato空间$\mathcal E^{p,q}_\mathcal F(\mathbb R^n).$ 并且, 我们得到了与截面族$\mathcal F$相关的Hardy-Littlewood极大算子, 奇异积分和分数次积分在Morre空间$\mathcal M^{p,q}_\mathcal F(\mathbb R^n)$的有界性. 我们也证明了, 当$1\leq q\leq p<\infty$时, Morre空间$\mathcal M^{p,q}_\mathcal F(\mathbb R^n)$和Campanato空间$\mathcal E^{p,q}_\mathcal F(\mathbb R^n)$是等价的. |
英文摘要: |
In this paper, we define the Morrey spaces $\mathcal M^{p,q}_\mathcal F(\mathbb R^n)$ and the Campanato spaces $\mathcal E^{p,q}_\mathcal F(\mathbb R^n)$ associated with a family $\mathcal F$ of sections and a doubling measure $\mu$, where $\mathcal F$ is closely related to the Monge-Amp\`ere equation. Furthermore, we obtain the boundedness of the Hardy-Littlewood maximal function associated to $\mathcal F,$ Monge-Amp\`ere singular integral operators and fractional integrals on $\mathcal M^{p,q}_\mathcal F(\mathbb R^n)$. We also prove that the Morrey spaces $\mathcal M^{p,q}_\mathcal F(\mathbb R^n)$ and the Campanato spaces $\mathcal E^{p,q}_\mathcal F(\mathbb R^n)$ are equivalent with $1\leq q\leq p<\infty$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|