王英瑛,陈卫星.$2$-Primal环的Ore扩张中的极小素理想和单位元[J].数学研究及应用,2018,38(4):378~383 |
$2$-Primal环的Ore扩张中的极小素理想和单位元 |
Minimal Prime Ideals and Units in 2-Primal Ore Extensions |
投稿时间:2017-07-10 修订日期:2018-04-27 |
DOI:10.3770/j.issn:2095-2651.2018.04.005 |
中文关键词: |
英文关键词:$2$-primal ring $(\alpha,\delta)$-compatible ring Ore extension |
基金项目: |
|
摘要点击次数: 1651 |
全文下载次数: 1285 |
中文摘要: |
|
英文摘要: |
Let $R$ be an $(\alpha,\delta)$-compatible ring. It is proved that $R$ is a 2-primal ring if and only if for every minimal prime ideal $\mathscr{P}$ in $R[x;\alpha,\delta]$ there exists a minimal prime ideal $P$ in $R$ such that $\mathscr{P}=P[x;\alpha,\delta]$, and that $f(x)\in R[x;\alpha,\delta]$ is a unit if and only if its constant term is a unit and other coefficients are nilpotent. |
查看全文 查看/发表评论 下载PDF阅读器 |