侯新民,吕晨晖.二部图形式的Erd\H{O}s-S\'{o}s猜想[J].数学研究及应用,2019,39(3):249~253 |
二部图形式的Erd\H{O}s-S\'{o}s猜想 |
Bipartite Version of the Erd\H{o}s-S\'{o}s Conjecture |
投稿时间:2018-11-29 修订日期:2019-03-03 |
DOI:10.3770/j.issn:2095-2651.2019.03.003 |
中文关键词: Erd\H{o}s-S\'{o}s猜想 二部图 树 |
英文关键词:Erd\H{o}s-S\'{o}s conjecture bipartite graphs trees |
基金项目:国家自然科学基金(Grant No.11671376), 安徽省自然科学基金(Grant No.170885MA18),安徽省量子信息技术先导项目(Grant No.AHY150200). |
|
摘要点击次数: 1254 |
全文下载次数: 889 |
中文摘要: |
二部图形式的Erd\H{O}s-S\'{o}s猜想 |
英文摘要: |
The Erd\H{o}s-S\'{o}s Conjecture states that every graph on $n$ vertices and more than $\frac{n(k-2)}{2}$ edges contains every tree of order $k$ as a subgraph. In this note, we study a weak (bipartite) version of Erd\H{o}s-S\'{o}s Conjecture. Based on a basic lemma, we show that every bipartite graph on $n$ vertices and more than $\frac{n(k-2)}{2}$ edges contains the following families of trees of order $k$: (1) trees of diameter at most five; (2) trees with maximum degree at least $\lfloor \frac{k-1}{2}\rfloor$; (3) almost balanced trees, these results are better than the corresponding known results for the general version of the Erd\H{o}s-S\'{o}s Conjecture. |
查看全文 查看/发表评论 下载PDF阅读器 |