Saba YASMEEN,武同锁.补图是$r$-部的图的顶点可分解性质[J].数学研究及应用,2021,41(1):14~24
补图是$r$-部的图的顶点可分解性质
Vertex Decomposable Property of Graphs Whose Complements Are $r$-Partite
投稿时间:2020-01-09  修订日期:2020-09-06
DOI:10.3770/j.issn:2095-2651.2021.01.003
中文关键词:  顶点可分解图  Cohen-Macaulay性  图的补  $r$-部图
英文关键词:vertex decomposable graph  Cohen-Macaulay  graph complement  $r$-partite
基金项目:海市自然科学基金(Grant No.19ZR1424100),国家自然科学基金(Grant No.11971338).
作者单位
Saba YASMEEN 上海交通大学数学学院, 上海 200240 
武同锁 上海交通大学数学学院, 上海 200240 
摘要点击次数: 20
全文下载次数: 20
中文摘要:
      假设$G$是一个非完全的简单图,并假设其补图$\bar{G}$是$r$-部图.本文研究这类图的具有(序列)Cohen-Macaulay性质的子类,特别是在$r=2,3$情形,给出了具有该性质的几种构造;在$r\ge 4$ 情形,给出了一些充分条件.
英文摘要:
      Let $G$ be a non-complete graph such that its complement $\ol{G}$ is $r$-partite. In this paper, properties of the graph $G$ are studied, including the Cohen-Macaulay property and the sequential Cohen-Macaulay property. For $r=2,3$, some constructions are established for $G$ to be \vd\, and some sufficient conditions are provided for $r\ge 4$.
查看全文  查看/发表评论  下载PDF阅读器