姚洁,吉国兴.保持算子截断的可加映射[J].数学研究及应用,2022,42(1):89~94 |
保持算子截断的可加映射 |
Additive Maps Preserving the Truncation of Operators |
投稿时间:2020-09-24 修订日期:2021-04-27 |
DOI:10.3770/j.issn:2095-2651.2022.01.008 |
中文关键词: 算子截断 算子方程 可加映射 保持 |
英文关键词:truncation of operator operator equation additive map preserver |
基金项目:国家自然科学基金(Grant No.11771261). |
|
摘要点击次数: 641 |
全文下载次数: 609 |
中文摘要: |
设$\mathcal H$是复Hilbert空间, $\mathcal B(\mathcal H)$是$\mathcal H$上有界线性算子组成的代数. 设$A,B\in\mathcal B(\mathcal H)$. 若$A=P_ABP_{A^*}$, 则称$A$是$B$的截断, 其中$P_A$和$P_{A^*}$分别表示$A$和$A^*$的值域闭包上的正交投影. 本文我们给出了$\mathcal B(\mathcal H)$上双边保持算子截断的可加映射的构造. |
英文摘要: |
Let $\mathcal{H}$ be a complex Hilbert space and $\mathcal{B}(\mathcal{H})$ the algebra of all bounded linear operators on $\mathcal{H}$. An operator $A$ is called the truncation of $B$ in $\mathcal B(\mathcal H)$ if $A=P_{A}BP_{A^*}$, where $P_{A}$ and $P_{A^*}$ denote projections onto the closures of $R(A)$ and $R(A^*)$, respectively. In this paper, we determine the structures of all additive surjective maps on $\mathcal{B}(\mathcal{H})$ preserving the truncation of operators in both directions. |
查看全文 查看/发表评论 下载PDF阅读器 |