陈松良,樊恽.Norm商群的Sylow子群皆循环的有限群[J].数学研究及应用,2022,42(2):153~161 |
Norm商群的Sylow子群皆循环的有限群 |
Finite Groups Whose Norm Quotient Groups Have Cyclic Sylow Subgroups |
投稿时间:2021-02-05 修订日期:2021-10-16 |
DOI:10.3770/j.issn:2095-2651.2022.02.006 |
中文关键词: norm(范) 戴德金群 哈密顿群 $\phi$-群 有限群的构造 西洛子群 |
英文关键词:norm Dedekind group Hamiltonian group $\pi$-group structure of finite group Sylow subgroup |
基金项目:国家自然科学基金(Grant No.11661023), 贵州省服务业发展引导资金投资计划项目(Grant No.黔发改服务[2018]1181号). |
|
摘要点击次数: 529 |
全文下载次数: 340 |
中文摘要: |
设$G$是有限群, $N(G)$为$G$的norm, 则$N(G)$是$G$的正规化G的每个子群的特征子群. 我们在下列条件之一下,研究了$G$的结构:1) Norm商群$G/N(G)$是循环群;2) Norm商群$G/N(G)$的所有Sylow子群都是循环群,特别地当$G/N(G)$的阶是无平方因子数时. |
英文摘要: |
Let $G$ be a finite group and $N(G)$ be its norm. Then $N(G)$ is a characteristic subgroup of $G$ which normalizes every subgroup of $G$. In this paper, we will study the structure of $G$ under one of the following conditions: 1) norm quotient group $G/N(G)$ is cyclic; 2) all Sylow subgroups of $G/N(G)$ are cyclic and in particular if the order of $G/N(G)$ is a square-free number. |
查看全文 查看/发表评论 下载PDF阅读器 |