林鸿金,陈俊凡,林书情.一类复线性微分差分方程亚纯解的唯一性[J].数学研究及应用,2022,42(4):331~348
一类复线性微分差分方程亚纯解的唯一性
Uniqueness of Meromorphic Solutions for a Class of Complex Linear Differential-Difference Equations
投稿时间:2021-04-02  修订日期:2022-01-11
DOI:10.3770/j.issn:2095-2651.2022.04.001
中文关键词:  亚纯函数  复差分微分方程  分担值  唯一性  有穷级
英文关键词:meromorphic solution  complex differential-difference equation  shared value  uniqueness  finite order
基金项目:国家自然科学基金(Grant No.12001211), 福建省自然科学基金(Grant No.2021J01651).
作者单位
林鸿金 福建师范大学数学与统计学院, 福建 福州 350117 
陈俊凡 福建师范大学数学与统计学院, 福建 福州 350117 
林书情 福建师范大学数学与统计学院, 福建 福州 350117 
摘要点击次数: 461
全文下载次数: 395
中文摘要:
      本文主要研究一类复线性微分差分方程超越亚纯解的唯一性.特别地,假设$f(z)$为复线性微分差分方程: $W_{1}(z)f'(z+1)+W_{2}(z)f(z)=W_{3}(z)$的一个有穷级超越亚纯解,其中$W_{1}(z)$, $W_{2}(z)$, $W_{3}(z)$为增长级小于1的非零亚纯函数并且满足$W_{1}(z)+W_{2}(z)\not\equiv 0$.若$f(z)$与亚纯函数$g(z)$, $CM$分担0,1,$\infty$,则$f(z)\equiv g(z)$或$f(z)+g(z)\equiv f(z)g(z)$或$f^{2}(z)(g(z)-1)^2+g^{2}(z)(f(z)-1)^2=g(z)f(z)(g(z)f(z)-1)$或存在一个多项式$\varphi(z)=az+b_{0}$使得$f(z)=\frac{1-e^{\varphi(z)}}{e^{\varphi(z)}(e^{a_{0}-b_{0}}-1)}$与$g(z)=\frac{1-e^{\varphi(z)}}{1-e^{b_{0}-a_{0}}}$,其中$a(\neq 0)$, $a_{0}$ $b_{0}$均为常数且$a_{0}\neq b_{0}$.
英文摘要:
      In this paper, we mainly study the uniqueness of transcendental meromorphic solutions for a class of complex linear differential-difference equations. Specially, suppose that $f(z)$ is a finite order transcendental meromorphic solution of complex linear differential-difference equation: $W_{1}(z)f'(z+1)+W_{2}(z)f(z)=W_{3}(z)$, where $W_{1}(z)$, $W_{2}(z)$, $W_{3}(z)$ are nonzero meromorphic functions, with their orders of growth being less than one, such that $W_{1}(z)+W_{2}(z)\not\equiv0$. If $f(z)$ and a meromorphic function $g(z)$ share 0, 1, $\infty$ CM, then either $f(z)\equiv g(z)$ or $f(z)+g(z)\equiv f(z)g(z)$ or $f^{2}(z)(g(z)-1)^{2}+g^{2}(z)(f(z)-1)^{2}\equiv f(z)g(z)(f(z)g(z)-1)$ or there exists a polynomial $\varphi(z)=az+b_{0}$ such that $f(z)=\frac{1-e^{\varphi(z)}}{e^{\varphi(z)}(e^{a_{0}-b_{0}}-1)}$, $g(z)=\frac{1-e^{\varphi(z)}}{1-e^{b_{0}-a_{0}}}$, where $a\,(\neq 0)$, $a_{0}$, $b_{0}$ are constants with $e^{a_{0}}\neq e^{b_{0}}$.
查看全文  查看/发表评论  下载PDF阅读器