肖嘉琪,贺玉清,袁平之.二项式系数的更多整除性质[J].数学研究及应用,2022,42(6):561~579 |
二项式系数的更多整除性质 |
More Divisibility Properties for Binomial Coefficients |
投稿时间:2021-09-04 修订日期:2022-05-07 |
DOI:10.3770/j.issn:2095-2651.2022.06.002 |
中文关键词: 二项式系数 p-进指数 整除性 |
英文关键词:binomial coefficients $p$-adic order divisibility property |
基金项目:国家自然科学基金(Grant No.12171163). |
|
摘要点击次数: 478 |
全文下载次数: 383 |
中文摘要: |
设$a$, $b$和$n$为正整数,且$a>b$,我们证明了下面的整除性质: 对所有正整数$n$, 我们有$$(2bn+1)(2bn+3)(2bn+5){2bn\choose bn}\Big|15(a-b)(3a-b)(5a-b)(5a-3b){2an \choose an}{an\choose bn},$$ 上述整除式推广了杨全会一文中的相关结论.且对所有正整数$n$,我们证明了下面的整除性质:$$(6n+1){4n\choose n}\Big|{12n\choose 6n}{2n\choose n},\ (12n+1){5n\choose n}\Big|{15n\choose 3n}{3n-1\choose n-1},$$ $$(18n+1){12n\choose 9n}{8n\choose 2n}\Big| {24n\choose 18n}{4n\choose 2n}{6n\choose 3n}.$$更多类似的整除性质可以给出. |
英文摘要: |
Let $a$, $b$ and $n$ be positive integers with $a>b$, we prove the following divisibility property: For all positive integers $n$, we have $$(2bn+1)(2bn+3)(2bn+5){2bn\choose bn}\Big|15(a-b)(3a-b)(5a-b)(5a-3b){2an \choose an}{an\choose bn},$$ which extends the result of Yang. And for all positive integers $n$, we show the following divisibility properties: $$(6n+1){4n\choose n}\Big|{12n\choose 6n}{2n\choose n},\ (12n+1){5n\choose n}\Big|{15n\choose 3n}{3n-1\choose n-1},$$ $$(18n+1){12n\choose 9n}{8n\choose 2n}\Big| {24n\choose 18n}{4n\choose 2n}{6n\choose 3n}.$$ Other more similar divisibility properties are given also. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|