肖丽鹏.高阶线性微分方程解的零点分布及Zygmund-型空间[J].数学研究及应用,2022,42(6):599~610 |
高阶线性微分方程解的零点分布及Zygmund-型空间 |
Zero Distribution of Solutions of Higher-Order Linear Differential Equations and Zygmund Type Space |
投稿时间:2021-11-30 修订日期:2022-06-25 |
DOI:10.3770/j.issn:2095-2651.2022.06.005 |
中文关键词: 线性微分方程 一致分离序列 Zygmund-型空间 |
英文关键词:linear differential equation uniformly separated sequence Zygmund type space |
基金项目:国家自然科学基金(Grant No.11661043). |
|
摘要点击次数: 415 |
全文下载次数: 340 |
中文摘要: |
本文主要考虑以下两个问题: (1) 建立非齐次线性微分方程$$f'''+A_2(z)f''+A_1(z)f'+A_0(z)f=A_3(z),$$ 系数增长性与解的零点的几何分布的相互关系, 其中 $A_0(z),\ldots, A_3(z)$为单位圆内的解析函数; (2) 找到一些使方程$$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_1(z)f'+A_0(z)f=0,$$ 所有解属于Zygmund-型空间的充分条件. 我们得到的结果推广了Heittokangas, Gr\"{o}hn, Korhoneon 和 R\"{a}tty\"{a}的部分结果. |
英文摘要: |
The aim of this paper is to consider the following two problems: (1)~~Establish interrelationships between the growth of coefficients and the geometric distribution of zeros of solutions of non-homogeneous linear differential equation $$f'''+A_2(z)f''+A_1(z)f'+A_0(z)f=A_3(z),$$ where $A_0(z),\ldots, A_3(z)$ are analytic functions in the unit disc $\mathbb{D}$; (2)~~Find some sufficient conditions on the analytic coefficients of the differential equation $$f^{(k)}+A_{k-1}(z)f^{(k-1)}+\cdots+A_1(z)f'+A_0(z)f=0,$$ for all solutions to belong to the Zygmund type space. The results we obtain are a generalization of some earlier results by Heittokangas, Gr\"{o}hn, Korhoneon and R\"{a}tty\"{a}. |
查看全文 查看/发表评论 下载PDF阅读器 |