陶磊,龙见仁.某类$q$差分方程亚纯解的性质[J].数学研究及应用,2023,43(1):83~90 |
某类$q$差分方程亚纯解的性质 |
On Properties of Meromorphic Solutions for Certain $q$-Difference Equation |
投稿时间:2021-11-23 修订日期:2022-05-07 |
DOI:10.3770/j.issn:2095-2651.2023.01.009 |
中文关键词: 复域差分方程 超越亚纯函数 增长级 存在性 |
英文关键词:complex $q$-difference equation transcendental meromorphic function order of growth existence |
基金项目:国家自然科学基金(Grant Nos.12261023; 11861023; 贵州省科学技术基金(Grant No.[2018]5769-05). |
|
摘要点击次数: 537 |
全文下载次数: 422 |
中文摘要: |
对于一个有穷非零复数$q$, 若下列$q$差分方程存在一个非常数亚纯解$f$, $$f(qz)f(\frac{z}{q})=R(z,f(z))=\frac{P(z,f(z))}{Q(z,f(z))}=\frac{\sum_{j=0}^{\tilde{p}}a_j(z)f^{j}(z)}{\sum_{k=0}^{\tilde{q}}b_k(z)f^{k}(z)},\eqno(\dag)$$ 其中 $\tilde{p}$和$\tilde{q}$是非负整数, $a_j$ ($0\leq j\leq \tilde{p}$)和$b_k$ ($0\leq k\leq \tilde{q}$)是关于$z$的多项式满足$a_{\tilde{p}}\not\equiv 0$和$b_{\tilde{q}}\not\equiv 0$使得$P(z,f(z))$和$Q(z,f(z))$是关于$f(z)$互素的多项式, 且$m=\tilde{p}-\tilde{q}\geq 3$. 则在$|q|=1$时得到方程$(\dag)$不存在亚纯解, 在$m\geq 3$和$|q|\neq 1$时得到方程$(\dag)$解$f$的下级的下界估计. |
英文摘要: |
Let $q$ be a finite nonzero complex number, let the $q$-difference equation $$f(qz)f(\frac{z}{q})=R(z,f(z))=\frac{P(z,f(z))}{Q(z,f(z))}=\frac{\sum_{j=0}^{\tilde{p}}a_j(z)f^{j}(z)}{\sum_{k=0}^{\tilde{q}}b_k(z)f^{k}(z)}\eqno(\dag)$$ admit a nonconstant meromorphic solution $f,$ where $\tilde{p}$ and $\tilde{q}$ are nonnegative integers, $a_j$ with $0\leq j\leq \tilde{p}$ and $b_k$ with $0\leq k\leq \tilde{q}$ are polynomials in $z$ with $a_{\tilde{p}}\not\equiv 0$ and $b_{\tilde{q}}\not\equiv 0$ such that $P(z, f(z))$ and $Q(z, f(z))$ are relatively prime polynomials in $f(z)$ and let $m=\tilde{p}-\tilde{q}\geq 3$. Then, $(\dag)$ has no transcendental meromorphic solution when $|q|=1$, and the lower bound of the lower order of $f$ is obtained when $m \geq 3$ and $|q|\neq 1$. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|