李慧娟,Alhussein MOHAMED,高承华.非线性边界条件下二阶奇异差分方程的正解[J].数学研究及应用,2023,43(1):101~108 |
非线性边界条件下二阶奇异差分方程的正解 |
Positive Solutions for Second-Order Singular Difference Equation with Nonlinear Boundary Conditions |
投稿时间:2022-02-28 修订日期:2022-08-19 |
DOI:10.3770/j.issn:2095-2651.2023.01.011 |
中文关键词: 差分方程 非线性边界条件 正解 |
英文关键词:difference equation nonlinear boundary conditions positive solutions |
基金项目:国家自然科学基金(Grant No.11961060). |
|
摘要点击次数: 499 |
全文下载次数: 402 |
中文摘要: |
本文我们考虑如下二阶奇异差分边值问题\begin{equation*}\begin{cases}-\Delta^{2} u(t-1)=\lambda g(t)f(u) ,\ t\in [1,T]_\mathbb{Z},\\u(0)=0,\\ \Delta u(T)+c(u(T+1))u(T+1)=0,\end{cases}\end{equation*}正解的存在性. 其中, $\lambda>0$, $f:(0,\infty)\rightarrow \mathbb{R}$ 是连续的,且允许在~$0$ 处奇异.通过引入一个新的全连续算子, 我们建立正解的存在性. |
英文摘要: |
In this paper, we discuss the existence of positive solutions for the second-order singular difference equation boundary value problem $$\left\{\begin{array}{ll}-\Delta^{2} u(t-1)=\lambda g(t)f(u), &t\in [1,T]_\mathbb{Z},\\u(0)=0,\\ \Delta u(T)+c(u(T+1))u(T+1)=0,\end{array}\right.$$ where $\lambda>0$ is a positive parameter, $f:(0,\infty)\rightarrow \mathbb{R}$ is continuous, and is allowed to be singular at $0$. The existence of positive solutions is established via introducing a new complete continuous operator. |
查看全文 查看/发表评论 下载PDF阅读器 |
|
|
|