孙艳萍,孙涛.具有弱对称应力的线弹性方程的稳定化格式[J].数学研究及应用,2023,43(3):350~362
具有弱对称应力的线弹性方程的稳定化格式
A Stabilized Formulation for Linear Elasticity Equation with Weakly Symmetric Stress
投稿时间:2022-08-09  修订日期:2023-01-08
DOI:10.3770/j.issn:2095-2651.2023.03.009
中文关键词:  混合有限元方法  稳定化格式  线弹性方程  弱对称应力
英文关键词:mixed finite element method  stabilized formulation  linear elasticity equation  weakly symmetric stress
基金项目:国家自然科学基金(Grant No.12171141), 河南省高等学校重点科研项目(Grant No.23B110005), 河南省青年自然科学基金(Grant No.222300420135), 河南工程学院博士基金(Grant No.D2017022).
作者单位
孙艳萍 河南工程学院理学院, 河南 郑州 451191 
孙涛 上海立信会计金融学院统计与数学学院, 上海 201209 
摘要点击次数: 41
全文下载次数: 63
中文摘要:
      利用稳定化方法讨论拉格朗日乘子法得到的具有弱对称应力的线弹性问题. 用线性元和分片常数分别逼近变分问题的应力和位移. 并通过添加稳定项$G_1(\cdot,\cdot)$, $G_2(\cdot,\cdot)$和$G_3(\cdot,\cdot)$ 使相应混合离散变分问题满足弱BB条件. 接着详细研究了变分问题的解与稳定混合有限元解之间的误差估计,最后用两个数值算例验证理论分析的有效性.
英文摘要:
      The linear elastic problem with weak symmetric stress obtained by Lagrange multiplier method is discussed by using the stabilization method. The stress and displacement of the variational problem are approximated by linear element and piecewise constant. By adding stabilization terms $G_1(\cdot,\cdot), G_2(\cdot,\cdot)$ and $G_3(\cdot,\cdot)$, the corresponding mixed discrete variational problem satisfies the weak inf-sup condition. Then the error estimation between the solution of the variational problem and the stabilized mixed finite element solution is studied in detail. Finally, two numerical examples are used to verify the effectiveness of the theoretical analysis.
查看全文  查看/发表评论  下载PDF阅读器