刘杰,于佳晖,陈阿拉坦仓.斜对角无穷维Hamilton算子的点谱和特征函数系辛结构的非退化性[J].数学研究及应用,2023,43(6):710~722 |
斜对角无穷维Hamilton算子的点谱和特征函数系辛结构的非退化性 |
On the Point Spectrum and Non-Degenerate Symplectic Structure of Eigenfunction Systems of Off-Diagonal Infinite Dimensional Hamiltonian Operators |
投稿时间:2022-12-12 修订日期:2023-06-01 |
DOI:10.3770/j.issn:2095-2651.2023.06.007 |
中文关键词: 点谱 非退化性 特征函数系 斜对角无穷维Hamilton算子 |
英文关键词:point spectrum non-degenerate symplectic structure eigenfunction system off-diagonal infinite dimensional Hamiltonian operator |
基金项目:国家自然科学基金(Grant No.11961022), 内蒙古自然科学基金(Grant Nos.2021MS01017; 2021BS01007,2020ZD01), 内蒙古自治区高等学校科学研究项目(Grant Nos.NJZY21205; NJZY21208), 内蒙古自治区直属高校基本科研业务费, 内蒙古自治区“草原英才”工程产业创新人才团队支持项目, 呼和浩特民族学院自然科学创新团队项目(Grant No.HM-TD-202005). |
|
摘要点击次数: 424 |
全文下载次数: 352 |
中文摘要: |
本文研究斜对角无穷维Hamilton算子$H=\begin{pmatrix}0&B\\C&0\end{pmatrix}$的点谱和特征函数系辛结构的非退化性, 给出斜对角无穷维Hamilton算子$H$的特征函数系具有非退化辛结构的充分必要条件. 基于此, 进一步刻画了斜对角无穷维Hamilton算子$H$的点谱分别包含于实轴、虚轴以及其它区域的充分必要条件. 最后, 以板弯曲问题和弦振动问题中导出的斜对角无穷维Hamilton算子为例, 验证了所得结论的正确性. |
英文摘要: |
The point spectrum and non-degenerate symplectic structure of eigenfunction systems of off-diagonal infinite dimensional Hamiltonian operator $H=\big(\begin{smallmatrix}0& B\\ C& 0\end{smallmatrix}\big)$ are studied in this article. The necessary and sufficient conditions for the eigenfunction systems of off-diagonal infinite dimensional Hamiltonian operator $H$ to have non-degenerate symplectic structure are given. Further, the necessary and sufficient conditions for point spectrum to be contained in real axis, imaginary axis and other areas are obtained for off-diagonal infinite dimensional Hamiltonian operator $H$, respectively. As an illustrating example, off-diagonal infinite dimensional Hamiltonian operators derived from the plate bending problem and string vibration problem are used to justify the conclusions. |
查看全文 查看/发表评论 下载PDF阅读器 |