苏敬蕊,杨彦炯,颜晓光.正交类和相对Gorenstein模[J].数学研究及应用,2024,44(1):25~34 |
正交类和相对Gorenstein模 |
Orthogonal Classes and Relative Gorenstein Modules |
投稿时间:2023-02-06 修订日期:2023-07-07 |
DOI:10.3770/j.issn:2095-2651.2024.01.004 |
中文关键词: Gorenstein模 正交类 对偶对 Mittag-Leffler条件 |
英文关键词:Gorenstein module orthogonal class duality pair Mittag-Leffler condition |
基金项目:江苏高校“青蓝工程”项目(Grant No.2022),国家自然科学基金(Grant No.11701408),江苏政府留学奖学金项目. |
|
摘要点击次数: 330 |
全文下载次数: 230 |
中文摘要: |
在这篇论文中,我们研究了$\mathcal{A}$-Gorenstein投射模类和$\mathcal{A}$的左正交模类之间的关系,以及$\mathcal{A}$-Gorenstein内射模类和A的右正交模类之间的关系.我们得到了$\mathcal{A}$-Gorenstein投射模和$\mathcal{A}$-Gorenstein内射模的一些函子刻画.以完备对偶对为工具,我们讨论了$\mathcal{A}$-Gorenstein投射模和$\mathcal{B}$-Gorenstein平坦模之间的关系,并推广了一些已知结论. |
英文摘要: |
In this paper, we study the relations between the class of $\mathcal{A}$-Gorenstein projective modules and the left orthogonal class of $\mathcal{A}$, also the relations between the class of $\mathcal{A}$-Gorenstein injective modules and the right orthogonal class of $\mathcal{A}$. Some functor characterizations of $\mathcal{A}$-Gorenstein projective modules and $\mathcal{A}$-Gorenstein injective modules are obtained. Using the notion of complete duality pair, we discuss the relations between $\mathcal{A}$-Gorenstein projective modules and $\mathcal{B}$-Gorenstein flat modules. Some known results are generalized. |
查看全文 查看/发表评论 下载PDF阅读器 |