逯光辉,王苗苗.非齐性广义Morrey空间上双线性强奇异Calder\'{o}n-Zygmund算子及交换子[J].数学研究及应用,2024,44(1):43~62 |
非齐性广义Morrey空间上双线性强奇异Calder\'{o}n-Zygmund算子及交换子 |
Bilinear Strongly Singular Calder\'{o}n-Zygmund Operators and Their Commutators on Non-Homogeneous Generalized Morrey Spaces |
投稿时间:2023-01-31 修订日期:2023-06-01 |
DOI:10.3770/j.issn:2095-2651.2024.01.006 |
中文关键词: 非齐性度量测度空间 双线性强奇异Calder\'{o}n-Zygmund算子 交换子 $\widetilde{\mathrm{RBMO}}(\mu)$空间 广义Morrey 空间 |
英文关键词:non-homogeneous metric measure space bilinear strongly singular Calder\'{o}n-Zygmund operator commutator space $\widetilde{\mathrm{RBMO}}(\mu)$ generalized Morrey space |
基金项目:国家自然科学基金(Grant No.12201500),甘肃省青年基金项目(Grant No.22JR5RA173); 西北师范大学青年教师科研能力提升计划项目(Grant No.NWNU-LKQN2020-07). |
|
摘要点击次数: 309 |
全文下载次数: 238 |
中文摘要: |
本文的主要建立非齐性度量测度空间上双线性强奇异积分算子$\widetilde{T}$及交换子$\widetilde{T}_{b_{1},b_{2}}$在广义Morrey空间$M^{u}_{p}(\mu)$上的有界性. 在假设Lebesgue可测函数$u, u_{1}, u_{2}\in\mathbb{W}_{\tau}$, $u_{1}u_{2}=u$,且$\tau\in(0,2)$. 证明了算子$\widetilde{T}$是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到空间$M^{u}_{p}(\mu)$有界的, 也是从乘积空间$M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$到广义弱Morrey空间$WM^{u}_{p}(\mu)$有界的,其中$\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$及$1
|
英文摘要: |
The main goal of this paper is to establish the boundedness of bilinear strongly singular operator $\widetilde{T}$ and its commutator $\widetilde{T}_{b_{1},b_{2}}$ on generalized Morrey spaces $M^{u}_{p}(\mu)$ over non-homogeneous metric measure spaces. Under assumption that the Lebesgue measurable functions $u, u_{1}$ and $u_{2}$ belong to $\mathbb{W}_{\tau}$ for $\tau\in(0,2)$, and $u_{1}u_{2}=u$. The authors prove that $\widetilde{T}$ is bounded from product spaces $M^{u_{1}}_{p_{1}}(\mu)\times M^{u_{2}}_{p_{2}}(\mu)$ into spaces $M^{u}_{p}(\mu)$, where $\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$ with $1
|
查看全文 查看/发表评论 下载PDF阅读器 |